PARALLELISABILITY OF PRINCIPAL FIBRE BUNDLES

BY

SHIING-SHEN CHERN AND SZE-TSEN HU

1. Introduction. One of the natural problems concerning fibre bundles is to determine whether or not a given fibre bundle $\mathfrak{F} = \{F, G; X, B; \psi, \phi_U\}$ is equivalent with the product bundle $B \times F$. It is proved in $[1, \S 1](1)$ that \mathfrak{F} is equivalent with $B \times F$ if and only if its principal fibre bundle $\mathfrak{F}^* = \tau \mathfrak{F}$ is parallelisable; therefore, the problem posed above leads to the parallelisability of a given principal fibre bundle. For the notions and the notations used in the present paper, one may refer to those given by Shiing-shen Chern and Yi-fone Sun in the first section of their recent paper [1].

Throughout the present paper, let $\mathfrak{F} = \{G, G; X, B; \psi, \phi_U\}$ be a given principal fibre bundle in which the base space is a finite polyhedron. Let B be given a triangulation such that the closure of every simplex is contained in some coordinate neighborhood U.

For each integer n $(0 \le n \le \dim B)$, let B^n be the n-dimensional skeleton of B, that is, the set of simplexes of B with dimensions not exceeding n. A principal fibre bundle $\mathfrak F$ is said to be n-parallelisable if there exists a mapping $f: B^n \to X$ such that $\psi f(b) = b$ for each point b of B^n . In this case, f is called an n-lifting of the principal fibre bundle $\mathfrak F$. Every principal fibre bundle $\mathfrak F$ is obviously 0-parallelisable. Hence the problem posed above can be considered as solved if one has found a necessary and sufficient condition for an (n-1)-parallelisable principal fibre bundle $\mathfrak F$ to be n-parallelisable $(0 < n \le \dim B)$. The object of the present paper is to give such a condition in terms of some cohomology invariants for the case that the reference group G is pathwise connected.

- 2. Orientability of fibre bundles. A fibre bundle is said to be *orientable* if its principal fibre bundle is 1-parallelisable. For a pathwise connected reference group G, every fibre bundle is orientable. This is an immediate consequence of the following statement.
- (2.1) If the reference group G is pathwise connected, then every principal fibre bundle $\mathfrak{F} = \{G, G; X, B; \psi, \phi_U\}$ is 1-parallelisable.

Proof. Let $f: B^0 \rightarrow X$ be an arbitrary 0-lifting of \mathfrak{F} , the existence of which is obvious. According to our hypothesis with respect to the triangulation of B made in §1, for a given 1-simplex σ of B, there exists a coordinate neighborhood U which contains the closure of σ . Let a and b be the two vertices of σ . Since $f(a) \in \psi^{-1}(a)$ and $f(b) \in \psi^{-1}(b)$, we might define two points p, $q \in G$ by taking

Presented to the Society, November 26, 1949; received by the editors December 10, 1948.

(1) The numbers in brackets denote the references in the bibliography at the end of the paper.

$$p = \phi_{U,a}^{-1} f(a), \qquad q = \phi_{U,b}^{-1} f(b).$$

Since G is pathwise connected, there exists a mapping θ : Cl $\sigma \rightarrow G$ such that $\theta(a) = p$ and $\theta(b) = q$. Extend the mapping f into the interior of σ by taking

$$f(x) = \phi_{U,x}\theta(x) \qquad (x \in \sigma).$$

Since $\psi \phi_{U,x} \theta(x) = x$ $(x \in \sigma)$, this gives us a 1-lifting $f: B^1 \to X$ of \mathfrak{F} and (2.1) is proved.

3. The cocycle $w^n(f)$ of an (n-1)-lifting $f: B^{n-1} \to X$. For the remainder of the paper, let n be an integer such that $2 \le n \le \dim B$ and assume that the principal fibre bundle \mathfrak{F} be (n-1)-parallelisable. Now, let $f: B^{n-1} \to X$ be an arbitrary (n-1)-lifting of \mathfrak{F} . We define a cochain $w^n(f)$ of B with coefficients in the (n-1)th homotopy group $\pi_{n-1}(G)$ of the reference group G as follows.

Let σ_i^n be an arbitrary *n*-simplex of B, then f is defined on the boundary sphere $\partial \sigma_i^n$ of σ_i^n . According to our hypothesis concerning the triangulation of B, there exists a coordinate neighborhood U which contains the closure $\operatorname{Cl} \sigma_i^n$ of σ_i^n . Since $f(b) \in \psi^{-1}(b)$ for each point b of $\partial \sigma_i^n$, we might define a mapping $b: \partial \sigma_i^n \to G$ by taking

$$\theta(b) = \phi_{U,b}^{-1}f(b) \qquad (b \in \partial \sigma_i^n).$$

Since G is (n-1)-simple [3, p. 69], θ determines a unique element $a_i \in \pi_{n-1}(G)$. (3.1) The element $a_i \in \pi_{n-1}(G)$ depends only on the (n-1)-lifting $f: B^{n-1} \to X$ and the n-simplex $\sigma_i^n \in B$; hence the correspondence $\sigma_i^n \to a_i$ defines a cochain $w^n(f)$ of B which depends only on f.

Proof. Let V be another coordinate neighborhood which contains $\operatorname{Cl} \sigma_i^n$ and let $\theta' \colon \partial \sigma_i^n \to G$ be the mapping defined by

$$\theta'(b) = \phi_{V,b}^{-1} f(b) \qquad (b \in \partial \sigma_i^n).$$

It follows from the Paste Condition [1, §1] for a principal fibre bundle that there exists an element $g \in G$ such that

$$\theta'(b) = g \cdot \theta(b)$$
 $(b \in \partial \sigma_i^n).$

Since G is pathwise connected, there exists a path $s: I \rightarrow G$ joining from the identity e of G to the element g, that is, s(0) = e and s(1) = g. Define a homotopy $\theta_t: \partial \sigma_t^n \rightarrow G$ $(0 \le t \le 1)$ by taking

$$\theta_t(b) = s(t) \cdot \theta(b)$$
 $(b \in \partial \sigma_i^n, \ 0 \le t \le 1).$

Then $\theta_0 = \theta$ and $\theta_1 = \theta'$. Since G is (n-1)-simple, θ' determines the same element $a_i \in \pi_{n-1}(G)$ as θ does. This completes the proof of (3.1).

(3.2) The cochain $w^n(f)$ is a cocycle.

Proof. Let σ^{n+1} be an arbitrary (n+1)-simplex of B. It need only be shown that

$$(\delta w^n(f))(\sigma^{n+1}) = 0,$$

where $\delta w^n(f)$ denotes the coboundary of $w^n(f)$. According to our hypothesis regarding the triangulation of B, there exists a coordinate neighborhood U which contains the closure $\operatorname{Cl} \sigma^{n+1}$ of σ^{n+1} . Let

$$A^{n-1} = B^{n-1} \cap \operatorname{Cl} \sigma^{n+1}.$$

and define a mapping $\xi: A^{n-1} \rightarrow G$ by taking

$$\xi(b) = \phi_{U,b}^{-1} f(b)$$
 $(b \in A^{n-1}).$

According to S. Eilenberg [2, p. 237], ξ determines an *n*-cocycle $c^n(\xi)$ of Cl σ^{n+1} with coefficients in $\pi_{n-1}(G)$. Clearly we have

$$c^{n}(\xi) = w^{n}(f) \mid \operatorname{Cl} \sigma^{n+1};$$

and hence

$$(\delta w^n(f))(\sigma^{n+1}) = (\delta c^n(\xi))(\sigma^{n+1}) = 0,$$

that is, $w^n(f)$ is a cocycle. q.e.d.

- 4. The characteristic coset $W^n(\mathfrak{F})$. According to (3.1) and (3.2), every (n-1)-lifting $f \colon B^{n-1} \to X$ of \mathfrak{F} determines an n-cocycle $w^n(f)$ of B and hence an element $\omega^n(f)$ of the cohomology group $H^n(B, \pi_{n-1}(G))$, called an n-dimensional obstruction element of the (n-1)-parallelisable principal fibre bundle \mathfrak{F} . The object of the present section is to prove that the n-dimensional obstruction elements of \mathfrak{F} form a coset of the presentable subgroup $P^n(B, \pi_{n-1}(G))$ in the cohomology group $H^n(B, \pi_{n-1}(G))$ [4, §3].
- (4.1) Every pair of (n-1)-liftings f, $g: B^{n-1} \to X$ of \mathfrak{F} determines a unique mapping $\mu: B^{n-1} \to G$ denoted by $\mu = f^{-1} \cdot g$.

Proof. The required mapping $\mu: B^{n-1} \to G$ is defined as follows: For an arbitrary point $b \in B^{n-1}$, choose a coordinate neighborhood U containing b and define

$$\mu(b) = (\phi_{U,b}^{-1}f(b))^{-1} \cdot (\phi_{U,b}^{-1}g(b)).$$

To justify this definition, let V be another coordinate neighborhood which contains b. By the aid of the Paste Condition [1, §1], that $\phi_{V,b}^{-1}\phi_{V,b}$ is a left translation of G determined by some element ξ of G, one may easily verify that

$$(\phi_{V,b}^{-1}f(b))^{-1} \cdot (\phi_{V,b}^{-1}g(b)) = (\xi \cdot \phi_{U,b}^{-1}f(b))^{-1} (\xi \cdot \phi_{U,b}^{-1}g(b))$$

$$= (\phi_{U,b}^{-1}f(b))^{-1} \cdot \xi^{-1} \cdot \xi \cdot (\phi_{U,b}^{-1}g(b)) = \mu(b).$$

Hence the transformation μ is uniquely defined. The continuity of μ follows from the fact that μ is continuous in every coordinate neighborhood U. This completes the proof.

(4.2) Given an (n-1)-lifting $f: B^{n-1} \to X$ of \mathfrak{F} and a mapping $\mu: B^{n-1} \to G$,

there exists a unique (n-1)-lifting $g: B^{n-1} \to X$ of \mathfrak{F} such that $f^{-1} \cdot g = \mu$.

Proof. The required (n-1)-lifting $g: B^{n-1} \to X$ is defined as follows: For an arbitrary point $b \in B^{n-1}$, choose a coordinate neighborhood U which contains b and define

$$g(b) = \phi_{U,b}(\phi_{U,b}^{-1}f(b)\cdot\mu(b)).$$

To justify this definition, let V be another coordinate neighborhood which contains b; then we have

$$\begin{aligned} \phi_{V,b}(\phi_{V,b}^{-1}f(b)\cdot\mu(b)) &= \phi_{U,b}\phi_{U,b}^{-1}\phi_{V,b}(\phi_{V,b}^{-1}\phi_{U,b}\phi_{U,b}f(b)\cdot\mu(b)) \\ &= \phi_{U,b}(\xi^{-1}\cdot(\xi\cdot\phi_{U,b}^{-1}f(b)\cdot\mu(b)) = g(b), \end{aligned}$$

where $\xi \in G$ has the same meaning as in the proof of (4.1). Hence g(b) is uniquely defined. The continuity of g follows from the fact that g is continuous in every coordinate neighborhood U. Further, clearly we have

$$\psi g(b) = \psi \phi_{U,b}(\phi_{U,b}^{-1}f(b) \cdot \mu(b)) = b;$$

hence g is an (n-1)-lifting of \mathfrak{F} . That $f^{-1} \cdot g = \mu$ is obvious. This completes the proof of (4.2).

(4.3) THEOREM I. The totality of the n-dimensional obstruction elements of an (n-1)-parallelisable principal fibre bundle \mathfrak{F} forms a coset $W^n(F)$ of the presentable subgroup $P^n(B, \pi_{n-1}(G))$ in the cohomology group $H^n(B, \pi_{n-1}(G))$, that is, $W^n(\mathfrak{F})$ is an element of the quotient group

$$Q^{n}(B, \pi_{n-1}(G)) = H^{n}(B, \pi_{n-1}(G))/P^{n}(B, \pi_{n-1}(G)).$$

Proof. Let $W^n(\mathfrak{F})$ denote the totality of the *n*-dimensional obstruction elements of \mathfrak{F} . First, let $f, g : B^{n-1} \to X$ be two arbitrary (n-1)-liftings of \mathfrak{F} and let $\mu = f^{-1} \cdot g$. μ presents a presentable element $[4, \S 3]$ of $H^n(B, \pi_{n-1}(G))$ represented by the cocycle $c^n(\mu)$, introduced by S. Eilenberg [2, p. 237]. Let σ^n be an arbitrary *n*-simplex of B. According to our hypothesis concerning the triangulation of B, there exists a coordinate neighborhood U which contains the closure $Cl \sigma^n$ of σ^n . Then, by the construction given in the proof of (4.1), we have

$$\mu(b) = (\phi_{U,b}^{-1}f(b))^{-1} \cdot (\phi_{U,b}^{-1}g(b)) \qquad (b \in \partial \sigma^n).$$

Hence, it follows from a homotopy property of a topological group [3] that

$$c^n(\mu)\cdot\sigma^n=\ w^n(g)\cdot\sigma^n-\ w^n(f)\cdot\sigma^n.$$

Hence it follows that

$$w^n(g) = w^n(f) + c^n(\mu),$$

and it implies that the obstruction elements $\omega^n(f)$ and $\omega^n(g)$ are contained in

the same coset of $P^n(B, \pi_{n-1}(G))$ in $H^n(B, \pi_{n-1}(G))$. This proves that $W^n(\mathfrak{F})$ is contained in a single coset of the presentable subgroup $P^n(B, \pi_{n-1}(G))$.

Conversely, let $f: B^{n-1} \to X$ be a given (n-1)-lifting of \mathfrak{F} and let α be an arbitrary presentable element of $H^n(B, \pi_{n-1}(G))$. According to the definition of presentable elements $[4, \S 3]$, there is a mapping $\mu: B^{n-1} \to G$ such that the cocycle $c^n(\mu)$ represents α . Let $g: B^{n-1} \to X$ be the (n-1)-lifting of \mathfrak{F} constructed in (4.2). Then it follows just as above that

$$w^n(g) = w^n(f) + c^n(\mu).$$

This implies that $\omega^n(g) = \omega^n(f) + \alpha$. Hence, every element of the coset $\omega^n(f) + P^n(B, \pi_{n-1}(G))$ is an obstruction element of \mathfrak{F} . This completes the proof of Theorem I.

- 5. *n*-Parallelisability theorems. We are now in a position to prove the main result of this paper.
- (5.1) THEOREM II. An (n-1)-parallelisable principal fibre bundle \mathfrak{F} is n-parallelisable if and only if $W^n(\mathfrak{F})$ is the presentable subgroup $P^n(B, \pi_{n-1}(G))$ of the cohomology group $H^n(B, \pi_{n-1}(G))$.

Proof. Necessity. Suppose \mathfrak{F} to be a *n*-parallelisable. Then there is an *n*-lifting $f^* \colon B^n \to X$ of \mathfrak{F} . Let $f = f^* \mid B^{n-1}$, then f is an (n-1)-lifting with $w^n(f) = 0$. It follows from (4.3) that $W^n(\mathfrak{F}) = P^n(B, \pi_{n-1}(G))$.

Sufficiency. Suppose that $W^n(\mathfrak{F}) = P^n(B, \pi_{n-1}(G))$. Then there exists an (n-1)-lifting $f \colon B^{n-1} \to X$ of \mathfrak{F} such that its obstruction element $\omega^n(f) = 0$, that is, the cocycle $w^n(f)$ is a coboundary. According to S. Eilenberg [2, (11.6)], there exists a mapping $\mu \colon B^{n-1} \to G$ such that $c^n(\mu) = -w^n(f)$. Let $g \colon B^{n-1} \to X$ be the (n-1)-lifting given in (4.2); then we have

$$w^n(g) = w^n(f) + c^n(\mu) = w^n(f) - w^n(f) = 0.$$

Let σ_i^n be an arbitrary *n*-simplex of *B*. Choose a coordinate neighborhood *U* which contains $\text{Cl } \sigma_i^n$. Define a mapping $\theta_i \colon \partial \sigma_i^n \to G$ by taking

$$\theta_i(b) = \phi_{U,b}^{-1}g(b)$$
 $(b \in \partial \sigma_i^n).$

Since $w^n(g) = 0$, θ_i has an extension θ_i^* : Cl $\sigma_i^n \to G$. Define a mapping h_i : Cl $\sigma_i^n \to X$ by taking

$$h_i(b) = \phi_{U,b}\theta_i^*(b)$$
 $(b \in \operatorname{Cl} \sigma_i^n).$

Then $h_i(b) = g(b)$ for each $b \in \partial \sigma_i^n$. Define a mapping $g^* : B^n \to X$ by taking

$$g^*(b) = \begin{cases} g(b) & (b \in B^{n-1}), \\ h_i(b) & (b \in {\stackrel{n}{\sigma}}_i). \end{cases}$$

Clearly, g^* is an *n*-lifting of \mathfrak{F} . This completes the proof of Theorem II. As an alternative form of Theorem II, we give the following statement.

(5.2) Let \mathfrak{F} be an (n-1)-parallelisable principal fibre bundle and $f: B^{n-1} \to X$ be a given (n-1)-lifting of \mathfrak{F} . \mathfrak{F} is n-parallelisable if and only if the cocycle $w^n(f)$ be presentable.

The following theorem is an immediate consequence of Theorem II.

(5.3) Theorem III. If G is pathwise connected and

$$H^n(B, \pi_{n-1}(G)) = P^n(B, \pi_{n-1}(G))$$

for each $2 \le n \le \dim B$, then every fibre bundle $\mathfrak{F} = \{F, G; X, B; \psi, \phi_U\}$ is equivalent with the product bundle $B \times F$.

BIBLIOGRAPHY

- 1. S. S. Chern and Y. F. Sun, The imbedding theorem for fibre bundles, Trans. Amer. Math. Soc. vol. 67 (1949) pp. 284-301.
- 2. S. Eilenberg, Cohomology and continuous mappings, Ann. of Math. vol. 41 (1940) pp. 231-251.
- 3. S. T. Hu, Some homotopy properties of topological groups and homogeneous spaces, Ann. of Math. vol. 49 (1948) pp. 67-74.
- 4. ——, Extension and classification of the mappings of a finite complex into a topological group or an n-sphere, Ann. of Math. vol. 50 (1949) pp. 158-173.

Academia Sinica, Nanking, China.